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Transversely homogeneous, uniformly sheared, turbulent flow was allowed to reach its
asymptotic structure in a straight wind tunnel section and then it was passed through
a sequence of two curved sections and a final straight section. The cross-sectional
shape of the entire wind tunnel was rectangular, while the two curved sections had
circular centrelines with the same radius but opposing curvatures. In all cases, the
mean strain rate due to curvature was relatively weak (±5%), compared to the mean
shear rate, but its effects on the turbulence kinetic energy and structure were sub-
stantial; streamwise pressure gradient effects were negligible. The turbulence structure
approached approximately self-similar states towards the downstream ends of each
curved section but the main interest of the present study was the rate of adjustment
of the turbulence following a stepwise change in curvature. It has been shown that the
adjustment of the shear stress anisotropy, which is a sensitive indicator of structural
changes, can be approximated by a first-order system response, whose time constant
scales with the inverse mean shear and is independent of the curvature parameter. Uni-
formly sheared flow results were used for an interpretation of the structure of curved
turbulent boundary layers, both during adjustment and in a fully developed state.

1. Introduction
Streamline curvature in the plane of the mean shear is one of the most important

sources of mean straining in turbulent shear flows. Its effect on the turbulence structure
is known to be significant and, for this reason, it has been studied extensively. A
qualitative assessment of this effect can be based on an analogy to linear stability
theory, which has identified the radial distribution of the mean angular momentum
as a primary factor in establishing whether the flow is stable or not. Previous work
has demonstrated that, when the mean angular momentum increases with increasing
radius of curvature, the turbulence would be suppressed, in which case the curvature
is referred to as ‘stabilizing’ while, when the mean angular momentum decreases with
increasing radius of curvature, the turbulence would be enhanced, and the curvature
is referred to as ‘destabilizing’. Thus, compared to a plane wall, a convex wall would
have a stabilizing influence on a turbulent boundary layer, while a concave wall would
have a destabilizing influence on it.

The present study is concerned with the structural changes of sheared turbulence
subjected to stepwise changes of flow curvature. Both the magnitude of this structural
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change as well as the rate of adjustment to a new structure have been investigated.
Both aspects have been the subject of numerous experimental and analytical studies.
An early critical review of curvature effects was compiled by Bradshaw (1973), who
concluded that prolonged application of a small additional mean strain rate, e = U/R
(U is the mean velocity and R is the radius of curvature), although possibly introducing
a negligible change in the total strain rate, could cause a substantial change in the
Reynolds stresses. He proposed that the change in stresses, compared to those in a
corresponding rectilinear flow, would be as large as if their production were multiplied
by the factor 1 + αe/(∂U/∂n), where n is a direction normal to the mean velocity
and the coefficient α is of the order of 10. Bradshaw further deduced that Prandtl’s
mixing length theory would be approximately valid in curved boundary layers, if the
mixing length were multiplied by the above factor; he estimated the values α ≈ 14 for
a convex wall and α ≈ 8 for a concave wall. Most available turbulence measurements
in curved shear flows were performed after Bradshaw’s review was published and
they generally confirmed his basic premises and his order of magnitude estimate for
α (Holloway & Tavoularis 1992, hereafter referred to as HT).

The rate of adjustment of the turbulent structure to stepwise changes in curvature
was also studied by Bradshaw (1973), who conjectured that, following a stepwise
application of a constant extra strain rate, e, the value of the parameter α required
to optimize agreement with the experimental results would rise exponentially to an
asymptotic value. Bradshaw’s estimate of the ‘time constant’ of exponential adjustment
for boundary layers with a thickness δ was 10δ. This subject has been discussed by
Gillis & Johnston (1980, 1983), Gibson, Verriopoulos & Vlachos (1984), Muck,
Hoffmann & Bradshaw (1985), Hoffman, Muck & Bradshaw (1985) and Barlow &
Johnston (1988). The reverse phenomenon, namely recovery of the turbulence from
curvature, which is also important in practical applications, has been investigated by
several authors. Smits, Young & Bradshaw (1979) studied the relaxation of turbulent
boundary layers subjected to short regions of strong convex and concave curvatures,
while Gillis & Johnston (1980, 1983), Alving & Smits (1986) and Alving, Smits &
Watmuff (1990) studied the recovery of a turbulent boundary layer from prolonged
strong convex curvature. Recovery from prolonged concave curvature appears not to
have been studied.

These results provided some support for Bradshaw’s analysis, but also introduced
much additional detail. In particular, it was observed that the turbulence structure,
as measured by turbulence stress ratios, adjusts to onset or removal of both types of
curvature quite rapidly, typically within a few δ. On the other hand, the adjustments
of the mean velocity and turbulence profiles require greater distances, which appear
to depend on the types of curvature and its change. This adjustment length was
found to be about 15δ for the onset of convex curvature and from 15δ to 90δ for
recovery from it. The adjustment to onset of concave curvature, even for boundary
layers not seriously contaminated by strong quasi-steady longitudinal vortices, tends
to be slower than that for convex layers. When such vortices exist, the resulting
three-dimensional flow has a substantially longer adjustment length.

Curvature reversal is a more drastic configuration than the types of curvature
change described above, albeit also common in applications. Baskaran, Smits &
Joubert (1987, 1991) examined in detail the development of a turbulent boundary
layer over a curved hill, which included successive plane, concave and convex wall
regions. In this experiment, two extra strain rates were present, one due to streamline
curvature and another due to the streamwise pressure gradient; both were strong
and, in places, comparable in magnitude to the mean strain rate due to shearing.
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An inspection of the Reynolds stress equations, however, showed that the interaction
between these two effects would be rather weak, because the curvature had a stronger
effect on the shear stress than on the normal stresses, while the effects of pressure
gradient mainly appeared through the production of normal stresses.

These authors also discussed the development of an internal layer, whose initiation
was attributed to the abrupt change in curvature. More recently, Bandyopadhyay &
Ahmed (1993) performed a comparative study of the development of two boundary
layers subjected to sequences of convex–concave and concave–convex longitudinal
surface curvatures. Their measurements included wall pressure, skin friction, mean
velocity and streamwise turbulence intensity. These flows were also subjected to a
streamwise pressure gradient, but the authors concluded that its effects would be
secondary to those of curvature. A main observation in this study was the asymmetric
response of the turbulent boundary layer to concave and convex surface curvatures,
manifested by differences in the skin friction in the plane recovery region: this
skin friction was lower following a sequence of concave–convex curvature than that
following a corresponding sequence of convex–concave curvature.

Uniformly sheared, essentially unbounded, nearly homogeneous turbulence (USF)
was successfully generated in curved ducts by HT (see also Holloway & Tavoularis
1993). This flow configuration is unique because it allows a study of curvature effects
without the complications created by walls and entrainment. A study of turbulence
model performance in this flow was conducted by Gatski & Savill (1989). HT were
mostly concerned with the fully developed USF structure, following exposure to
prolonged uniform curvature, and they produced asymptotic relationships among
various structural parameters, notably the Reynolds shear stress and the relative
strength of curvature.

The present investigation is focused on the region of adjustment of USF structure,
following stepwise changes in the mean curvature of the wind tunnel, including
transition from a rectilinear to a curved section, curvature reversal and relaxation
from a curved to a rectilinear section. Our main objective is to determine the rate
of adjustment of the flow structure and its possible dependence upon the type and
magnitude of curvature change. Our intention was to minimize and, if possible, to
eliminate the undesirable effects of boundary layers developing along the four wind-
tunnel walls and those of streamwise pressure gradients that would inevitably appear
following curvature changes. The present USF results are consistent with Bradshaw’s
analysis and, in spite of the absence of any direct wall effects, consistent with many
observations previously made in the outer regions of curved boundary layers.

2. Analytical considerations
The present study is concerned with flows which are two-dimensional, on the

average, so that their mean streamlines are plane curves, and such that their lateral
extent is small compared to their streamwise extent. The adopted coordinate system
(s, n, z), shown in figure 1, is a modified version of a general curvilinear coordinate
system, such that the coordinate s follows a plane curve, called the ‘centreline’, the
coordinate n is along a straight axis, normal to the centreline, and the coordinate
z is normal to the plane of the centreline and conforming with the right-hand rule.
It will be assumed that n = 0 on the centreline and, for consistency with the usual
boundary layer convention, n will be considered positive if it points towards the
direction of increasing mean velocity, assumed not to reverse throughout the flow.
For compatibility with the HT experiments, we shall adopt the convention that the
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Figure 1. Definition of the coordinate systems in curved uniformly sheared flows and curved
boundary layers. The z-axis is defined normal to the shown plane, according to the right-hand rule.

radius of curvature, Rc, of the centreline will be considered as positive when the
centre of curvature is towards negative n and negative otherwise. In this coordinate
system, the velocity components will be denoted as (U,V ,W ) and, following the
usual convention, overbars will denote averages and lower-case symbols will denote
fluctuations.

Now, consider a stationary turbulent flow, with a constant mean velocity gradient
∂U/∂n (within the present approximation, the dependence of U on s will be assumed
to be very weak), homogeneous on any (n, z)-plane, and such that the scale of
turbulent motions is small compared to the distance from the centreline to any solid
boundary or turbulent/non-turbulent interface. The local curvature parameter (HT)
will be defined as

S =
Uc/Rc

∂U/∂n
. (2.1)

It is clear that S would be positive or negative, depending on the orientations of the
mean shear rate and the curvature. The two configurations of the present experiment
have been identified in figure 1: NE indicates a configuration in which S < 0 at the
start, and PE a configuration in which S > 0 at the start.

Then, the equations describing the evolution of the turbulent kinetic energy per
unit mass, 1

2
q2 = 1

2
(u2 + v2 + w2), and the non-vanishing turbulent stresses can be

simplified to the following forms:

U
d( 1

2
q2)

ds
= P − ε, (2.2)

U
d( 1

2
u2)

ds
= −uv ∂U

∂n
(1 + S) + φuu − εuu, (2.3)

U
d( 1

2
v2)

ds
= 2uv

∂U

∂n
S + φvv − εvv, (2.4)

U
d( 1

2
w2)

ds
= φww − εww, (2.5)

U
d(uv)

ds
= −v2

∂U

∂n
(1 + S) + 2u2

∂U

∂n
S + φuv − εuv, (2.6)
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Figure 2. Sketch of the experimental facility. 1, contraction; 2, shear generator/flow separator; 3,
straight section; 4, boundary layer bleeding; 5, start of curved subsection; 6, curvature reversal; 7,
start of straight recovery subsection. Dimensions in mm.

where the production, P , of the turbulent kinetic energy is defined as

P = −uv ∂U
∂n

(1− S). (2.7)

ε is the dissipation rate, partitioned into the components εuu, εvv and εww , and φuu, φvv ,
φww and φuv are the pressure strain-rate covariances. These equations are identical
to those derived by HT for uniform curvature, and consistent with those derived
by Gatski & Savill (1989). It may be remarked that the above equations can be
integrated to yield continuous distributions of the Reynolds stresses even at locations
of discontinuous change, including reversal, of curvature. In such cases, however, one
might expect that the omitted streamwise diffusion terms should act to smooth the
apparent discontinuities in the derivatives of the stresses. By letting Rc →∞, and thus
S → 0, the above equations are reduced to the corresponding forms for rectilinear
USF (Harris, Graham & Corrsin 1977).

3. Experimental apparatus and instrumentation
3.1. The wind tunnel facility

The wind tunnel used in the present experiments was located at the University of
Ottawa; its main features are shown schematically in figure 2. The initial straight
test section was nominally 305 mm high, 457 mm wide and 3190 mm long. At its
upstream end, it was equipped with a shear generator and a flow separator. The shear
generator was 150 mm long and comprised 12 separate, 25.4 mm high, channels. Sets
of different screens with various solidities were stretched across these channels to
introduce a variable flow resistance, as required to create a uniformly sheared flow.
The flow separator, 610 mm long and consisting of 12 channels aligned with those in
the shear generator, was inserted to improve the transverse homogeneity of the large
scales. A nearly homogeneous shear flow was produced in this tunnel, having a value
of the shear generator constant

ks =
1

Uc

∂U

∂n
≈ 6.2 m−1 (3.1)

for centreline speeds Uc ranging from 5 to 15 m s−1. The wind tunnel design and
operation have been described in more detail by Karnik & Tavoularis (1987).

The flow exiting the initial straight section was passed through a compound curved
section, which consisted of a straight entrance subsection, 203 mm long, a first curved
subsection with a centreline arclength of 1017 mm, a second curved subsection of
equal length but reversed curvature, and a final straight subsection, 1245 mm long.
The origin of the coordinate s was at the start of the first straight subsection, so
that s = 203 mm at the start of curvature. The centreline radii of curvature of both
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curved subsections were 3500 mm. For this radius, and for a centreline velocity of
10 m s−1, the curvature parameter was S ≈ ±0.05. The compound curved section
was also rectangular, but both its height and its width were smaller than those at
the exit of the initial straight section. The inlet to the curved section was positioned
to face the core of the incoming flow and such that the boundary layers developing
along the four walls of the initial straight section were passively (i.e. without suction
or other forcing) bled into the room. Care was taken to sharpen the leading edges
of the curved section in order to reduce the chance of separation. The boundary
layer characteristics before and after bleeding were not investigated in detail, not
being of great importance in this study. However, velocity measurements just after
the entrance of the compound curve section confirmed that the incoming flow was
essentially homogeneous. The height of the compound curved channel, which was
kept constant at h = 240 mm, will be used for non-dimensionalizing the transverse
coordinate. The channel’s width was gradually increased from 413 mm to 430 mm as
partial compensation for boundary layer growth.

To align the straight and curved sections, their centrelines were engraved on the
sidewalls and adjusted to be tangent at their interseaction. To align the probe with
the flow direction, circumferential and radial lines were engraved on the two sidewalls
of the section. The axis of the traversing mechanism was offset so that the tip of the
probe would traverse radially.

3.2. Measuring instrumentation and uncertainty

Hot-wire instrumentation. The turbulence measurements were conducted with a com-
mercial hot-wire probe (TSI, model 1248 BJ-T1.5), having two sensors made of
tungsten and arranged in a cross-wire configuration, inclined by ±45◦ (nominally)
with respect to the probe axis. The two sensing elements had diameters of 5 µm and
lengths of 1.2 mm, and were separated by a distance of 0.50 mm. The uncertainties in
the sensor orientation with respect to the probe axis (determined by direct calibration
over a probe angle range of ±30◦) and in the probe orientation with respect to the
wind tunnel centreline (determined with a precision cathetometer) were estimated to
be about ±0.5◦. The hot-wire signals were conditioned by off-setting, amplification
and low-pass filtering at 10 kHz, digitized at rates of 2 kHz and 25 kHz, and stored
on magnetic tapes for later processing. Typically, 50 data records, each with two sets
of 2048 samples, were used to calculate the turbulence statistics at each location. The
2 kHz data were used to calculate the turbulent stresses, while the 25 kHz data were
used to calculate the time-derivative statistics. The analog to digital converter (Data
Translation, model DT2828) could sample four channels simultaneously with 12 bits
of resolution.

Spatial resolution of the probe. The sensor length was typically about 4% of the
streamwise integral length scale, about 20% of the streamwise Taylor microscale
and about 8.5 times the estimated Kolmogorov microscale. Using Corrsin’s (1963)
method, one may infer that a systematic underestimation of the order of 0.5% could
occur in the turbulent kinetic energy and the Reynolds stresses, due to the limited
spatial resolution of the probe. This error is negligible compared to the random
uncertainty. On the other hand, Wyngaard’s (1969) analysis for the present conditions
leads to an underestimation of the order of 30% for the mean-squared temporal
velocity derivative, which results in an overestimation of the order of 20% for the
Taylor microscale, λ. For this reason, direct Taylor microscale measurements are not
reported here and the turbulent kinetic energy dissipation rate is estimated from the
simplified turbulent kinetic energy equation.
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Overall uncertainty of the measurements. An analysis of cross-wire uncertainty, con-
forming to current international standards, has been performed. It accounts for the
uncertainties in curve-fitting of calibration data to King’s law and in the determina-
tion of sensor and probe body orientations, which are the main contributors to the
uncertainty of first and second velocity moments. The resulting typical uncertainties
within a confidence level of 95% (i.e. with 20:1 odds that the true value would be
inside the corresponding interval, centred about the reported values) are as follows
(the shear stress correlation coefficient, ρ, and the shear stress anisotropy, muv , will be
defined in §4.2):

δU/U ≈ ±2%, δV/U ≈ ±3%, δW/U ≈ ±3%

δu2/u2 ≈ ±4%, δv2/v2 ≈ ±8%, δw2/w2 ≈ ±8%, δq2/q2 ≈ ±3%
δuv/uv ≈ ±8%, δρ ≈ ±0.03, δmuv ≈ ±0.01.

4. Measurements
4.1. Mean flow

The centreline velocity at the entrance to the compound curved section was set
to about 10 m s−1. Two flow configurations were obtained, depending on whether
the shear generator was in its upright or an inverted orientation. For consistency
with the convention illustrated in figure 1, the coordinate n at the entrance to
the compound section was defined as pointing towards the direction of increasing
velocity, i.e. it had different directions for the two configurations. As explained in §2,
these configurations will be referred to as NE and PE, depending on whether the
parameter S was negative or positive at the entrance to the first curved subsection
(figure 1). Measurements of the components of the mean velocity along the centreline
of the test section showed that the maximum variation of the streamwise component,
Uc, was 6% for the PE configuration and 10% for the NE configuration, while
the transverse and spanwise components were generally less than 4% of Uc. Such
deviations from an idealized velocity field can be considered as mild; they can be
mostly attributed to residual boundary layer growth, despite the slight divergence
of the sidewalls, and to possible mean streamline divergence from the geometric
centreline due to the unequal boundary layer thicknesses along the four walls. The
streamwise velocity variation can be associated with a mild streamwise pressure
gradient, whose effects were estimated to be small compared to those of curvature
(see discussion in §5.1).

Transverse profiles of the streamwise velocity, taken at four different streamwise
stations, are shown in figure 3. The variation of the slopes of the profiles was
relatively small but systematic and can be attributed partly to the flow turning.
Inviscid flow analysis, conserving the mean vorticity, (∂U/∂n)(1 + S), of the flow,
predicts that entry of a shear flow into a section with a larger S would tend to
decrease the mean shear, while the opposite would happen if S decreased. The
gradual deterioration of the slope of the profiles over the length of the tunnel is
mainly attributed to boundary layer development along the four walls. Typically, the
mean shear magnitude was about 65 s−1 at the entrance to the compound curved
section and, by the end of the second curved subsection, it decreased to about 55
s−1 for PE and 50 s−1 for NE. This introduced some difference between the nominal
total strain, τ = |ks|s, and that estimated from the local values of the shear parameter,
ks. Such differences were quite small for the PE configuration but exceeded 10% at
the end of the second curved subsection for the NE configuration. The development



230 B. Chebbi, A. G. L. Holloway and S. Tavoularis

U
Uc

1.6

1.2

0.8

0.4

1.6

1.2

0.8

0.4
–0.4 –0.2 0 0.2 0.4

(b)

n/h

(a)

U
Uc

Figure 3. Transverse profiles of the dimensionless streamwise mean velocity, U/Uc.
(a) configuration NE; (b) configuration PE. s/h = 0.6 (2), 3.0 (4), 7.0 (5), 10.8 (◦).
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Figure 4. Variation of the curvature parameter, S , along the centreline for configurations NE (•)
and PE (◦). Vertical dashed lines indicate the locations of curvature change, while dotted lines
indicate the average values of S within each curved subsection.

of the parameter S along the wind tunnel’s centreline is shown in figure 4. The
variations of the magnitudes of the mean shear and the S parameter along each
curved subsection may be viewed as small, when compared to the sudden changes
in S at the boundaries between subsections, which were either 100% or 200%. This
permitted the use of the following nominal values of S for each pair of curved
subsections: −0.049 and 0.060 for the NE configuration and 0.047 and −0.047 for
the PE configuration.
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Figure 5. Spanwise profiles of the shear stress correlation coefficient (in absolute value) at n/h = 0
for configurations NE (•) and PE (◦). (a,c) s/h = 0.6; (b,d) s/h = 11.9. w = 413 mm is the initial
test section width.

4.2. Reynolds stresses and evolution of anisotropy

The transverse and spanwise inhomogeneities of the Reynolds stresses were relatively
mild and comparable to those in previous USF studies (HT). For example, figure 5
shows that the levels of spanwise inhomogeneity of the shear stress correlation
coefficient, ρ = uv/u′v′, near the beginning and the end of the test section for both
NE and PE configurations were relatively weak, and did not appear to change
systematically when changes of curvature occurred. This is consistent with the lack of
other detectable signs of streamwise vortices in the central core of the flow, although
one may not exclude the possibility of formation of such vortices near the concave
wall. Consistent with the HT results, the rate of growth of the Reynolds stresses was
enhanced for S < 0 and suppressed for S > 0, in comparison to its rectilinear flow
levels (figure 6).

The changes in the normal dimensionless Reynolds stress anisotropies, muu, mvv and
mww (defined as muu = u2/q2−1/3 etc.), following a curvature change, were measurable
and systematic (figure 7a–c), but they appeared to display memory effects and were
difficult to interpret by simple arguments. Another observation that could be made is
that, although at the entrance of the final straight subsection all anisotropies for NE
had values comparable to those for PE, the two sets diverged in that subsection. While
possibly spurious, this behaviour is consistent with the observed overshooting, beyond
rectilinear shear flow levels, of the turbulence statistics during relaxation of curved
flows in straight sections (e.g. in the curved mixing layer of Castro & Bradshaw 1976,
and the convex boundary layer of Gillis & Johnston 1983). In general, it appears
that negative S promotes anisotropy, while positive S reduces it. The magnitude of
the shear stress anisotropy, muv = uv/q2 (figure 7d; the significance of the dashed
line in this graph will be explained later in this section), showed a much stronger
systematic variation, as it clearly increased with decreasing curvature and decreased
with increasing curvature (one is reminded of the sign convention for the radius of
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curvature). The same trends, but even stronger, were displayed by the shear stress
correlation coefficient, ρ (figure 7e).

The Reynolds stress anisotropies presented above depend on the orientations of the
coordinate axes, which, in the present experiments, were variable. A clearer view of the
effects of curvature on the turbulence structure would be obtained by observing the
evolution of parameters which are invariant to coordinate rotations. Such parameters
are the principal stress anisotropies, which, for the present type of two-dimensional
mean streams, are equal to

m1,2 =
muu + mvv

2
±
[(muu − mvv

2

)2

+ m2
uv

]1/2

(4.1)

m3 = muv.

The anisotropy scalar

m2 = m2
uu + m2

vv + m2
ww + 2m2

uv (4.2)

is another invariant, although not independent of the principal stress anisotropies.
The angle of the maximum principal stress axis with respect to the s-axis is

θ1 = 1
2
tan−1 −2muv

muu − mvv
. (4.3)
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The developments of the principal anisotropies, the anisotropy scalar and the angle
θ1 along the tunnel centreline are shown in figure 8. Based on the evolution of m2,
one may infer that the overall anisotropy of the flow increased in regions with S < 0
and decreased in regions with S > 0. The changes in principal stress anisotropies were
relatively small, compared to the changes in muv , suggesting that muv changed largely
due to changes in the orientation of the principal axes. This conclusion is supported
by the development of the angle θ1, which changed by as much as 25% within each
subsection. To separate the effects of principal stress orientation from those of their
magnitudes, one may use the relationship

muv =
m1 − m2

2
sin 2θ1 (4.4)

and assume constant values of the principal stress anisotropies, for example the
average value of m1 − m2 ≈ 0.4, corresponding to rectilinear USF. The relevance
of the above conjecture was confirmed by observing that the measured muv was, in
general, not very different from its estimates based on the above relationship and
plotted as dashed lines in figure 7(d). Another worthwhile observation is that changes
in θ1 closely followed changes in the turning angle, s/Rc, at least within a certain
region following a change in curvature. This is demonstrated by considering the
diagonal lines drawn in figure 8(d), which, starting at equilibrium values near the
end of each subsection, extend into the subsequent curved subsection with a slope
of h/Rc. The hypothetical evolution of θ1 along these lines would correspond to
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the principal axes being fixed to a static Cartesian (i.e. not the present curvilinear)
coordinate system. This implies that, at least initially, the coordinate axes may be
viewed as rotating away from the principal directions. This behaviour is clearly
limited to θ1 < 0.43, regardless of the direction of flow curvature. Near the end of
each subsection, the changes in θ1 ceased, manifesting that the angles between the
principal axes of anisotropy and the principal axes of mean strain rate, which are
inclined by ±45◦ with respect to the s-direction, approached constant asymptotes. An
explanation for the apparent initial rate of change of the turbulence structure upon
entering a curved section, due to the reorientation of the coordinate system, will be
given in §5.3. The above observation for the present flow differs from the finding of
Castro & Bradshaw (1976) that, in a highly curved mixing layer, the observed changes
of the shear stress could not be simply attributed to the inherent rotation of the (s, n)
coordinate axes.

4.3. Lengthscales

The streamwise integral lengthscales were estimated by integrating the corresponding
temporal auto-correlation coefficients to their first zero crossings and employing
Taylor’s frozen flow approximation. The growths of Luu, Lvv , and Lww , shown in
figure 9, were enhanced for S < 0 and suppressed for S > 0, with the strongest
changes exhibited by Lvv , while Lww showed the weakest changes. Although Luu was
generally the larger scale, the ordering of the two other scales depended on the history
of curvature.
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Figure 9. Variation of the integral lengthscales along the centreline for configurations NE (•) and
PE (◦). (a) Luu/Luuo, (b) Lvv/Luuo and (c) Lww/Luuo. The reference lengthscale at the inlet to the first
curved subsection was Luuo = 46.4 (NE) or 49.6 mm (PE). Vertical lines indicate the locations of
curvature change.

5. Analysis and discussion of measurements
5.1. Estimates of streamwise pressure gradient effects

At this point it is important to examine whether the turbulence development was
indeed relatively free of streamwise pressure gradient effects, in conformity with the
objective of the present study. Suitable equations for the mean momentum and the
Reynolds stresses in curvilinear coordinates and discussion of pressure gradient effects
have been presented, among others, by Bradshaw (1973), Castro & Bradshaw (1976),
Nakayama (1987) and Baskaran et al. (1991). The relevant conclusions of these studies,
which also apply to the present configuration, were as follows: (a) away from walls,
the mean shear would be insensitive to changes in the streamwise pressure gradient;
(b) the turbulent shear stress is not affected directly by streamwise pressure gradients,
as no such term appears in its balance equation; and (c) the main contribution of the
streamwise pressure gradient to the evolution of the turbulent kinetic energy is the
additional production term, termed the ‘normal stress production’. According to (c),
a measure of the relative importance of pressure gradient effects would be the ratio
of this production term and the turbulence production by the mean shear, namely

F =
−(u2 − v2)∂U/∂s

−uv∂U/∂n
. (5.1)

Although this ratio is analogous to the curvature parameter S , there is one important
difference in the ways weak curvature and weak pressure gradients affect the turbu-
lence production. Curvature affects the main production term −(uv)(∂U/∂n) primarily
through its dramatic effect on the shear stress, while the direct production by the
additional curvature strain rate, U/R, may be neglected. In contrast, the shear stress
is relatively unaffected by pressure gradients, so that its effects may be altogether
negligible, if F � 1.

Figure 10(a) presents the measured mean velocity along the geometric centreline of
the test section. The variations of this velocity were relatively small but measurable.



236 B. Chebbi, A. G. L. Holloway and S. Tavoularis

1.2

1.1

1.0

0.9

0.8

0.10

0.05

–0.05

–0.10

0

0 2 4 6 8 10 12

(b)

(a)

s/h

F

Uc

Uref

Figure 10. Variation of (a) the mean velocity ratio, Uc/Uref and (b) the pressure gradient coefficient,
F , along the centreline for configurations NE (•) and PE (◦). The reference mean velocity was
Uref = 10.05 (NE) or 10.30 m s−1 (PE).

They can be attributed to curvature changes and unequal growths of the boundary
layers along the four walls of the test section. The streamwise derivative of the
mean velocity was estimated by polynomial fitting to the measurements and was
used, together with local measurements of the Reynolds stresses and the mean shear
rate, to estimate the variation of the parameter F , shown in figure 10(b). Even
when doubled to account for possible streamline divergence, this parameter never
exceeded 10%, which is sufficient assurance for disregarding pressure gradient effects.
Significant pressure gradients cannot be generated in the present type of flow except
deliberately, as for example in the experiments of Akbary (1997), in which substantial
flow acceleration was superimposed on curved USF by reducing gradually the test
section’s height.

Our estimates corroborate the assessment of Bandyopadhyay & Ahmed (1993)
that curvature effects dominated those of pressure gradient for their boundary layers
subjected to successive convex–concave and concave–convex wall surface curvatures.
In contrast, pressure gradients were much stronger in other curved flow experiments,
for example those by Nakayama (1987) and Baskaran et al. (1991), in which both the
pressure gradient parameter, F , and the curvature parameter, S , attained magnitudes
of the order of 1.

5.2. The turbulence in ‘fully developed’ regions

One of the most important conclusions reached by HT for fully developed, curved
USF was that, for relatively weak curvature effects (−0.20 < S < 0.20), the shear
stress anisotropy, muv , could be approximately described by the linear relationship

muv ≈ −0.14(1− 3.0S), (5.2)

while, for dominant curvature effects (S → ±∞), muv → 0.25. The present mea-
surements of muv in the downstream halves of each subsection were consistent with
the above relationship, indicating that the turbulence structure in these regions ap-
proached self-similarity. The growth of the turbulent kinetic energy in each subsection,
normalized by its value, q2

i , at the entrance to that subsection, has been plotted in
figure 11 against the total strain within the same subsection, ∆τ = τ− τi, where τi is
the total strain at the entrance to that subsection. The solid lines, passing through the



The response of sheared turbulence to changes in curvature 237

10

1

0.1

10

1

0.1
0 2 4 6 0 2 4 6

Dô Dô

(a) (b)

q2
i

q2

Figure 11. Evolution of the turbulent kinetic energy within the curved subsections for configurations
(a) NE and (b) PE. The corresponding values of the curvature parameter were S ≈ −0.049 (•),
0.060 ( ), 0.047 (◦) and −0.047 (2). The solid lines represent equation (5.3).

last measurement points, represent asymptotic exponential evolution of the type

q2

q2
∞

= eκq∞(τ−τ∞) (5.3)

where the coefficient κq∞ was computed from an empirical expression given by HT
and the subscript ∞ refers to a far downstream location, which is non-essential for
the present purposes. With the possible exception of the S = 0.060 case, the data
in the downstream half of each curved subsection appear to be compatible with
this equation, thus further confirming the existence of ‘fully developed’ regions. The
upstream halves, where the flow structure was adjusting to a change in curvature
and deviations from these relations were significant, can be categorized as ‘entrance’
regions. The presence of these two regions is also confirmed by the development of
muv in each subsection. In all cases, there were entrance regions, in which a parameter
adjusted, and fully developed regions, where the same parameter approached the
values predicted by the asymptotic expressions of HT, in which the nominal values
of S in the corresponding sections were used.

Within each fully developed region, the dynamic process of production, evolution
and destruction of turbulent eddies can be characterized by the average lifetime
of the energy-containing eddies, tu = q2/ε. This timescale should be related to the
local values of the two externally imposed timescales, namely the inverse mean shear
rate, ts = |∂U/∂n|−1, and the turning rate, tc = Rc/Uc. For small |S |, tu should be
proportional to ts, while, for large |S |, it should be proportional to tc. Now, let us focus
on cases with zero and small |S |. It has been well documented (e.g. by Sreenivasan
1985 and Tavoularis & Karnik 1989) that, in rectilinear USF as well as in outer
boundary layers and other shear flows, the ratio tu/ts = cu is a constant of order
10. For the present purposes, the turbulent kinetic energy dissipation rate, ε, was
estimated as the balance of the other measureable terms in the simplified equation
(2.2). The uncertainty in ε and the corresponding uncertainty in tu are, roughly, ±30%.
The small-|S | results of HT as well as the present measurements are compatible with
a linearized relationship of the form

tu/ts ≈ cu(1− 2.2S) (5.4)

with cu a constant of order 10. This implies that curvature with S < 0 tends to
prolong the life of the energy-containing eddies and curvature with S > 0 tends to
shorten it.

In summary, the present measurements in the downstream portions of the two
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curved sections essentially reproduce the findings of HT for small values of |S |. In
the following section, we shall discuss the main subject of the present study, namely
the rate of adjustment of the turbulence to curvature changes.

5.3. The rate of adjustment to curvature changes

The evolution of a general curved shear flow seems to be far too complex to
be described by relatively simple means, because, in the presence of continuously
changing curvature, the local timescale of the turbulence eddies would likely depend
strongly on the past states of the flow. Therefore, we shall only attempt to analyse
the case of a turbulent flow which, starting from a self-similar state that developed
under the influence of uniform shear and curvature, underwent a stepwise change in
mean streamline curvature, and was then allowed to achieve a new self-similar, fully
developed state. In this case, in addition to the local turbulent eddy lifetime, tu, one
should also consider a timescale representing the process of turbulence adjustment
from an old to a new structural state. This timescale applies to a volume of fluid
convected along a mean streamline and travelling with the mean convection speed.
If the turbulence is viewed in a stationary frame, it is more appropriate to use
a development length, corresponding to the minimum distance (along the mean
streamline) between locations with the old and the new structural states. Among
the various parameters that can be used in determining structural adjustment, the
quantity muv was found to be the most sensitive to curvature changes. In order
to accommodate cases with different initial and final states, we shall consider the
variation of this quantity in the reduced form

δm =
muv − muvo
muv∞ − muvo

, (5.5)

where the subscript o indicates the initial structure at the location of curvature change
and the subscript ∞ indicates the far downstream fully developed structure.

Figure 12 plots δm versus τ for the six present cases, including transitions from
straight to curved flow, from convex to concave flow, or vice versa, and from curved
to straight flow. The scatter is appreciable, yet all sets of data appear to collapse in
a cluster. The observed scatter is consistent with uncertainty estimates for δm. The
uncertainty of muv , based on the estimates in §3.2, is 8.5%, but the uncertainty in the
asymptotic values of muv could be higher, because of the uncertainty in establishing
the fully developed regions. Taking the latter to be 17%, and using as typical values
muv = 0.12, muvo = 0.15, and muv∞ = 0.10, one may estimate a typical 95% confidence
level uncertainty in δm as ±0.3. Also shown in figure 12, as a dashed line, is the
exponential expression

δm = 1− e−∆τ/Td , (5.6)

which seems to describe fairly well the evolution of δm, thus suggesting that structural
adjustment to a step change in curvature may be roughly modelled by the step
response of a first-order linear system. The dimensionless time constant of the optimal
exponential curve was Td ≈ 1.5, while most of the data were bracketed by exponential
curves having Td ≈ 1.0 and 2.25. This implies that δm would reach 95% of its
asymptotic value within a convection time of 4.5ts, or a streamwise distance of
4.5/ks. This adjustment time is comparable to tu and to values suggested by several
investigators as required for the full development of rectilinear USF and for the
adjustment of USF structure following a contraction (Sreenivasan 1985). Therefore,
one may conclude that, at least for relatively small |S |, the mean shear is the primary
factor in determining the rate of adjustment to geometrical changes.
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Figure 12. Adjustment of the normalized shear stress anisotropy difference, δm, following a step
change in curvature for the configurations NE (solid symbols) and PE (open symbols); circles
indicate measurements in the first curved subsection, squares in the second curved subsection and
triangles in the final straight subsection; the dashed line is an exponential curve with a dimensionless
time constant of 1.5.

Figure 12 was examined carefully for any hints for a possible dependence of Td on
the strength of curvature and its change. In all three cases, data sets corresponding
to changes with nearly opposite S appeared to collapse. This may be interpreted
as evidence that the sign of S is not important. Based on the present experimental
evidence, one may reasonably conclude that, for a given geometrical configuration and
for small values of the curvature parameter, S , the dimensionless rate of adjustment to
curvature changes is roughly independent of S . This implies that the actual adjustment
time scales with the inverse mean shear rate, which is consistent with the fact that, in
this class of flows, mean shear is the main turbulence production mechanism, imposing
its timescale on all related events. Therefore, for a fixed mean shear rate, a flow would
adjust to arbitrary small changes of mean radius of curvature in approximately the
same time. On the other hand, for a given mean streamline radius of curvature, a
flow with higher shear (i.e. lower |S |, relatively weaker curvature) would likely adjust
to curvature changes faster than a flow with lower shear (i.e. higher |S |, relatively
stronger curvature).

This empirically found exponential form of the parameter δm can be used to explain
the observed initial changes in the shear stress anisotropy, following a stepwise change
in curvature. Towards this purpose, one may expand the exponential expression in
equation (5.6) into a power series and retain only the linear term. Further using
the asymptotic expression (5.2) and some algebraic manipulations, one may easily
estimate that, for small s (measured from the location of curvature change),

muv ≈ muvo +
0.42

Td

(
1

Rc∞
− 1

Rco

)
∆S, (5.7)

which clearly indicates that the initial rate of change of muv would depend only on
the change of the radius of curvature and it would be independent of the mean shear!
This result explains the initial variation of muv in the present experiments (figure 7d
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and can be easily extended to explain the initial change in the apparent inclinations
of the principal stress axes (e.g. as shown in figure 8d). In fact, HT have also observed
that the initial rate of change of muv in their experiments scaled with the radius of
curvature (see their figure 13), although they attributed this effect to the large values
of S . In the light of the present analysis, one may put forward the hypothesis that, no
matter how weak or strong the shear is, the structural changes occur at an initial rate
which scales with the radius of curvature but reach their asymptotes after a distance
which scales with the parameter k−1

s .

6. Interpretation of curvature effects on turbulent boundary layers using
USF results

In the present section, measurements on turbulent boundary layers over curved
walls will be analysed in light of the conclusions derived from the curved USF. It
will be shown not only that the two types of flows bear strong qualitative similarities,
but, also, that some of their important features can be predicted by the same semi-
empirical formulas. As in the USF case, we shall first analyse the asymptotic structure
of turbulent boundary layers subjected to prolonged uniform curvature and, then, we
shall deal with the boundary layer adjustment to stepwise changes of curvature.

6.1. Asymptotic structure of curved boundary layers

In turbulent boundary layers, both parameters S and muv vary across and along the
layer. Concave wall curvature tends to increase the growth rate of the boundary
layer thickness above the plane wall level, thus increasing the streamwise variation
of S , while convex wall curvature has the opposite effects. Furthermore, concave
boundary layers are known to exhibit spanwise variation of the mean flow and
the turbulence parameters, because of quasi-steady longitudinal vortices, which are
believed to depend strongly on upstream non-uniformities (Barlow & Johnston 1988).
Nevertheless, we have confirmed that the asymptotic USF relationship (4.4), for the
shear stress anisotropy, also holds approximately for the outer fully turbulent (i.e.
non-intermittent) regions of boundary layers over convex walls with a uniform radius
of curvature and following sufficient development length. Measurements in outer
layers over concave walls are in poor agreement both with each other and with
predictions based on equation (5.2) (figure 13).

In order to further explore the apparent analogy between USF and curved turbulent
boundary layers, one needs an analytical expression for the velocity profile in the
latter. For simplicity, it will be assumed that the outer boundary layer profile can be
approximated by the power law,

U

U∞
= ξ1/p (6.1)

where ξ = n/δ. The applicability of a power law with p ≈ 7, to plane boundary
layers has been well documented. We have also successfully fitted power laws with
p in the range 4.5 to 4.8 to the data of Gillis & Johnston (1983) for fully developed
boundary layers over convex walls. On the other hand, the applicability of a power
law to concave layers is rather uncertain, although a power law with p ≈ 7.9 seemed to
describe the data of Ramaprian & Shivaprasad (1977) and Shivaprasad & Ramaprian
(1978).

Considering thin, outer layers whose mean velocity can be described by a power
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Figure 13. Comparison of measured profiles of the shear stress anisotropy in curved boundary
layers with a simple prediction using USF results (—– , equation (5.2)). Convex layers: 4, Gillis
& Johnston (1983), δ/Rw = 0.10; O, Gillis & Johnston (1983), δ/Rw = 0.05; ◦, Ramaprian &
Shivaprasad (1977) and Shivaprasad & Ramaprian (1978); �, So & Mellor (1973). Concave layers:
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(1988).

law, one can easily show that the curvature parameter can be expressed as

S = ±p ξ

(Rw/δ)± ξ ≈ ±pξ
δ

Rw
= ±p n

Rw
(6.2)

which shows clearly that the relative strength of curvature increases with distance
from the wall. Substituting equation (6.2) into equation (5.2), and using a value of
p = 4.7, one may derive the following expression for the shear stress anisotropy profile
across convex boundary layers:

muv ≈ 0.14

(
1− 14.1

δ

Rw
ξ

)
. (6.3)

This is perfectly consistent with Gillis & Johnston’s (1983) empirical observation that
shear stress profiles in convex layers collapse when plotted vs. n/Rw . Using, as typical,
the values of S and muv at ξ = 0.5, one may conclude that

(muv)0.5 ≈ 0.14

(
1− 7.0

δ

Rw

)
, (6.4)

which reproduces Bradshaw’s (1973) conclusion that curvature appears to affect
turbulence production as if its magnitude were amplified by a factor of the order of
10. Equation (6.3) can also be used to estimate the thickness of the ‘active shear stress
layer’ (namely the distance from the wall at which the shear stress vanishes) as

ξo ≈
1

3pδ/Rw
or

no

Rw
≈ 0.07 (6.5)

which is independent of the initial boundary layer thickness, as Gillis & Johnston
(1983) rightly observed. One may also observe that, according to equation (6.5), the
shear stress would vanish at a location where S ≈ 0.33.
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We shall close this section with another example of the usability of USF results in
the prediction of boundary layer properties. Gillis & Johnston (1980) claimed that,
in the low-shear-stress outer region of the convex boundary layer, the turbulence
would be essentially isotropic and used the isotropic turbulence decay law to predict
the evolution of its kinetic energy. HT have demonstrated that, in curved USF, the
turbulence is highly anisotropic, even where the shear stress vanishes. Therefore, an
exponential kinetic energy evolution law, like equation (5.3), would likely be more
appropriate than the isotropic power decay law. The total strain, τ, from the start of
curvature can be expressed as

∆τ ≈ 1

pξ

∆S

δ
. (6.6)

If, for simplicity, one substitutes the estimated values of S and ξ at the zero-shear-
stress point into the expression provided by HT for the coefficient κq , one may derive
the decay law

q2

q2
o

= e−0.80∆s/Rw (6.7)

which fits the Gillis & Johnston (1980) data at least as well as their isotropic
expression.

6.2. Adjustment to a step change in curvature

The rate of adjustment of boundary layers to start or removal of curvature has been
examined by several investigators, but both the measurements and their interpretations
vary and often contradict each other. Part of the discrepancies may be due to
differences in geometries and experimental conditions, because the boundary layer
structure is sensitive to many factors. One of the conclusions that seem to find
general acceptance (e.g. see Alving & Smits 1986 and Smits & Wood 1985) is that
the turbulence attains self-preservation much faster near the wall than in the outer
layer. This is perfectly consistent with the present finding that, for a given curvature
change, the adjustment time would be inversely proportional to the mean shear: the
streamline radius of curvature is essentially constant across a thin layer, while the
mean shear decreases rapidly with distance from the wall. In other words, both USF
and boundary layer measurements have demonstrated that the response to curvature
would be slower at locations where the mean shear is relatively weaker.

The quantitative description of the adjustment time in boundary layers faces the
difficulties of continuous variation of properties across the flow and the fact that
different properties adjust at different rates. In boundary layers, as well as in USF,
it is the Reynolds stress anisotropies that adjust the fastest, with the shear stress
anisotropy being the most sensitive among all others (Gillis & Johnston 1983; Alving
et al. 1990). For this reason, we have chosen the shear stress anisotropy as an indicator
of adjustment. For an order of magnitude analysis, one could assume a power law
profile, which describes well plane and convex outer layers and at least some concave
layers. Then, the dimensionless adjustment length, ∆sd/δ, can be calculated as

∆sd
δ
≈ pξ∆τd (6.8)

where ∆τd is the dimensionless adjustment time, estimated from the present mea-
surements to be about 4.5. Further considering realistic values of p in the range of
4.5 to 5.0 for convex layers, about 7.0 for plane layers and somewhat higher for
concave layers, and taking the mid-layer (ξ = 0.5) as a representative location, one
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reproduces the familiar value of an adjustment length of the order of 10δ, proposed
by Bradshaw (1973) and later confirmed by many other investigators. Interestingly
enough, the above expression even discriminates between the different types of bound-
ary layers through differences in their values of p. Despite the apparent qualitative
success of the simplistic empirical expression (6.8), one must concede that the avail-
able boundary layer measurements are subjected to effects (e.g. non-equilibrium and
three-dimensional effects) that cannot be accommodated by relationships based on
USF-type flows.

7. Conclusions
The present study is the latest in a series of mainly experimental investigations of

uniformly sheared flows (USF), which have, in our opinion, further established their
utility not only as a simplified paradigm of active turbulence, but also as a tool for
producing and testing results useful in the understanding and prediction of far more
complex turbulent flows. USF are known to employ considerable theoretical and
experimental approximations, yet the previous and present studies have proved that
the main effects of shearing and streamline curvature can be identified and described,
both qualitatively and quantitatively (for certain purposes), from USF results.

For the present experiments, USF were allowed to develop in a sequence of
straight and curved wind tunnel sections. A first conclusion was that, sufficiently
far downstream from the locations of stepwise changes in curvature, the turbulence
reached asymptotic structures, all features of which were independent of the upstream
histories of the flows and in excellent agreement with measurements of Holloway &
Tavoularis (1992) in curved sections. HT’s asymptotic expressions for the dependence
of the dimensionless shear stress anisotropy and the growth rate of the turbulent
kinetic energy upon the curvature parameter, S , were confirmed and proved to apply,
approximately, not only to USF but also to the outer regions of curved turbulent
boundary layers.

The main objective of the present work, namely the description of the turbulence
adjustment to curvature changes, has also been met, at least for the ‘weak’ curvature
range. All present measurements appear compatible with an exponential adjustment
of the shear stress anisotropy for which the ‘time constant’ is inversely proportional
to the mean shear rate and approximately independent of the flow curvature before
and after the change. Surprisingly, this simple model makes reasonable predictions of
the turbulent boundary layer adjustment to wall curvature changes.

Financial support for the above research was provided by the Natural Sciences and
Engineering Research Council of Canada.
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